Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Catal Sci Technol ; 13(20): 5912-5923, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-38013724

RESUMO

Lignin is the most abundant renewable feedstock to produce aromatic chemicals, however its depolymerisation involves the breaking of several C-O and C-C inter-unit linkages that connect smaller aromatic units that are present in lignin. Several strategies have been reported for the cleavage of the C-O inter-unit linkages in lignin. However, till today, only a few methodologies have been reported for the effective breaking or the conversion of the recalcitrant C-C inter unit linkages in lignin. Here we report the ruthenium ion catalysed oxidative methodology as an effective system to activate or convert the most recalcitrant inter unit linkages such as ß-5 and 5-5' present in lignin. Initially, we used biphenyl as a model compound to study the effectiveness of the RICO methodology to activate the 5-5' C-C linkage. After 4 h reaction at 22 °C, we achieved a 30% conversion with 75% selectivity towards benzoic acid and phenyl glyoxal as the minor product. To the best of our knowledge this is the first ever oxidative activation of the C-C bond that connects the two phenyl rings in biphenyl. DFT calculation revealed that the RuO4 forms a [3 + 2] adduct with one of the aromatic C-C bonds resulting in the opening of the phenyl ring. Biphenyl conversion could be increased by increasing the amount of oxidant; however, this is accompanied by a reduction in the carbon balance because of the formation of CO2 and other unknown products. We extended this RICO methodology for the oxidative depolymerisation of lignin model hexamer containing ß-5, 5-5' and ß-O-4 linkages. Qualitative and quantitative analyses of the reaction mixture were done using 1H, 13C NMR spectroscopy methods along with GC-MS and Gel Permeation Chromatographic (GPC) methods. Advanced 2D NMR spectroscopic methods such as HSQC, HMBC and 31P NMR spectroscopy after phosphitylation of the mixture were employed to quantitatively analyse the conversion of the ß-5, 5-5' and ß-O-4 linkages and to identify the products. After 30 min, >90% of the 5-5' and linkages and >80% of the ß-5' are converted with this methodology. This is the first report on the conversion of the 5-5' linkage in lignin model hexamer.

2.
ACS Catal ; 11(8): 4893-4907, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34055453

RESUMO

Glycerol solutions were vaporized and reacted over ceria catalysts with different morphologies to investigate the relationship of product distribution to the surface facets exposed, particularly, the yield of bio-renewable methanol. Ceria was prepared with cubic, rodlike, and polyhedral morphologies via hydrothermal synthesis by altering the concentration of the precipitating agent or synthesis temperature. Glycerol conversion was found to be low over the ceria with a cubic morphology, and this was ascribed to both a low surface area and relatively high acidity. Density functional theory calculations also showed that the (100) surface is likely to be hydroxylated under reaction conditions which could limit the availability of basic sites. Methanol space-time-yields over the polyhedral ceria samples were more than four times that for the cubic material at 400 °C, where 201 g of methanol was produced per hour per kilogram of the catalyst. Under comparable glycerol conversions, we show that the rodlike and polyhedral catalysts produce a major intermediate to methanol, hydroxyacetone (HA), with a selectivity of ca. 45%, but that over the cubic sample, this was found to be 15%. This equates to a 13-fold increase in the space-time-yield of HA over the polyhedral samples compared to the cubes at 320 °C. The implications of this difference are discussed with respect to the reaction mechanism, suggesting that a different mechanism dominates over the cubic catalysts to that for rodlike and polyhedral catalysts. The strong association between exposed surface facets of ceria to high methanol yields is an important consideration for future catalyst design in this area.

3.
Faraday Discuss ; 229: 108-130, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650598

RESUMO

The production of methanol from glycerol over a basic oxide, such as MgO, using high reaction temperatures (320 °C) is a promising new approach to improving atom efficiency in the production of biofuels. The mechanism of this reaction involves the homolytic cleavage of the C3 feedstock, or its dehydration product hydroxyacetone, to produce a hydroxymethyl radical species which can then abstract an H atom from other species. Obtaining a detailed reaction mechanism for this type of chemistry is difficult due to the large number of products present when the system is operated at high conversions. In this contribution we show how DFT based modelling studies can provide new insights into likely reaction pathways, in particular the source of H atoms for the final step of converting hydroxymethyl radicals to methanol. We show that water is unlikely to be important in this stage of the process, C-H bonds of C2 and C3 species can give an energetically favourable pathway and that the disproportionation of hydroxymethyl radicals to methanol and formaldehyde produces a very favourable route. Experimental analysis of reaction products confirms the presence of formaldehyde. The calculations presented in this work also provide new insight into the role of the catalyst surface in the reaction showing that the base sites of the MgO(100) are able to deprotonate hydroxymethyl radicals but not methanol itself. In carrying out the calculations we also show how periodic DFT and QM/MM approaches can be used together to obtain a rounded picture of molecular adsorption to surfaces and homolytic bond cleavage which are both central to the reactions studied.

4.
Chem Rev ; 120(8): 3890-3938, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32223178

RESUMO

In this review, we discuss selected examples from recent literature on the role of the support on directing the nanostructures of Au-based monometallic and bimetallic nanoparticles. The role of support is then discussed in relation to the catalytic properties of Au-based monometallic and bimetallic nanoparticles using different gas phase and liquid phase reactions. The reactions discussed include CO oxidation, aerobic oxidation of monohydric and polyhydric alcohols, selective hydrogenation of alkynes, hydrogenation of nitroaromatics, CO2 hydrogenation, C-C coupling, and methane oxidation. Only studies where the role of support has been explicitly studied in detail have been selected for discussion. However, the role of support is also examined using examples of reactions involving unsupported metal nanoparticles (i.e., colloidal nanoparticles). It is clear that the support functionality can play a crucial role in tuning the catalytic activity that is observed and that advanced theory and characterization add greatly to our understanding of these fascinating catalysts.

5.
Dalton Trans ; 48(19): 6353-6357, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30994665

RESUMO

A complete reversal of the spin state of iron(iii) is observed upon a small change to the diporphyrin bridge from ethane to ethene by keeping all other factors intact. Combined analysis using single crystal X-ray structure determination, Mössbauer, variable-temperature magnetic, 1H NMR and EPR studies has confirmed the spin states of iron(iii) complexes both in solid and solution phases.

6.
Chemistry ; 22(51): 18608-18619, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27727524

RESUMO

Cytochrome P450 enzymes are heme-containing mono-oxygenases that mainly react through oxygen-atom transfer. Specific features of substrate and oxidant that determine the reaction rate constant for oxygen atom transfer are still poorly understood and therefore, we did a systematic gas-phase study on reactions by iron(IV)-oxo porphyrin cation radical structures with arenes. We present herein the first results obtained by using Fourier transform-ion cyclotron resonance mass spectrometry and provide rate constants and product distributions for the assayed reactions. Product distributions and kinetic isotope effect studies implicate a rate-determining aromatic hydroxylation reaction that correlates with the ionization energy of the substrate and no evidence of aliphatic hydroxylation products is observed. To further understand the details of the reaction mechanism, a computational study on a model complex was performed. These studies confirm the experimental hypothesis of dominant aromatic over aliphatic hydroxylation and show that the lack of an axial ligand affects the aliphatic pathways. Moreover, a two-parabola valence bond model is used to rationalize the rate constant and identify key properties of the oxidant and substrate that drive the reaction. In particular, the work shows that aromatic hydroxylation rates correlate with the ionization energy of the substrate as well as with the electron affinity of the oxidant.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Heme/química , Hidroxilação , Oxidantes/química , Cinética , Ligantes , Espectrometria de Massas , Modelos Moleculares
7.
Int J Mol Sci ; 16(10): 23369-81, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26426009

RESUMO

Industrial Fischer-Tropsch processes involve the synthesis of hydrocarbons usually on metal surface catalysts. On the other hand, very few homogeneous catalysts are known to perform a Fischer-Tropsch style of reaction. In recent work, we established the catalytic properties of a diruthenium-platinum carbene complex, [(CpRu)2(µ²-H) (µ²-NHCH3)(µ³-C)PtCH3(P(CH3)3)2](CO)n⁺ with n=0, 2 and Cp=η5-C5(CH3)5, and showed it to react efficiently by initial hydrogen atom transfer followed by methyl transfer to form an alkyl chain on the Ru-center. In particular, the catalytic efficiency was shown to increase after the addition of two CO molecules. As such, this system could be viewed as a potential homogeneous Fischer-Tropsch catalyst. Herein, we have engineered the catalytic center of the catalyst and investigated the reactivity of trimetal carbene complexes of the same type using iron, ruthenium and osmium at the central metal scaffold. The work shows that the reactivity should increase from diosmium to diruthenium to diiron; however, a non-linear trend is observed due to multiple factors contributing to the individual barrier heights. We identified all individual components of these reaction steps in detail and established the difference in reactivity of the various complexes.


Assuntos
Ferro/química , Osmio/química , Rutênio/química , Monóxido de Carbono/química , Conformação Molecular , Termodinâmica
8.
Chemistry ; 21(25): 9083-92, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25924594

RESUMO

Cytochrome P450 enzymes are highly versatile biological catalysts in our body that react with a broad range of substrates. Key functions in the liver include the metabolism of drugs and xenobiotics. One particular metabolic pathway that is poorly understood relates to the P450 activation of aliphatic groups leading to either hydroxylation or desaturation pathways. A DFT and QM/MM study has been carried out on the factors that determine the regioselectivity of aliphatic hydroxylation over desaturation of compounds by P450 isozymes. The calculations establish multistate reactivity patterns, whereby the product distributions differ on each of the spin-state surfaces; hence spin-selective product formation was found. The electronic and thermochemical factors that determine the bifurcation pathways were analysed and a model that predicts the regioselectivity of aliphatic hydroxylation over desaturation pathways was established from valence bond and molecular orbital theories. Thus, the difference in energy of the OH versus the OC bond formed and the π-conjugation energy determines the degree of desaturation products. In addition, environmental effects of the substrate binding pocket that affect the regioselectivities were identified. These studies imply that bioengineering P450 isozymes for desaturation reactions will have to include modifications in the substrate binding pocket to restrict the hydroxylation rebound reaction.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Xenobióticos/metabolismo , Biocatálise , Sistema Enzimático do Citocromo P-450/química , Hidroxilação , Teoria Quântica , Termodinâmica , Xenobióticos/química
9.
Inorg Chem ; 54(4): 1919-30, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25610949

RESUMO

We report the synthesis, structure, and spectroscopic characterization of 1,2-bis[µ-hydroxo iron(III) 5-(2,3,7,8,12,13,17,18-octaethylporphyrinyl)]ethane with PF6(­) and SbF6(­) counteranions. The two iron centers are nonequivalent with admixed intermediate spin state (S = 3/2 with a minor contribution of S = 5/2) on each metal both in the solid and in solution. The molecules are compared with previously known µ-hydroxo complexes with other counterions, such as I3(­), BF4(­), and ClO4(­), which demonstrates that the nature of the counterion can affect the spin-state ordering dramatically. To understand how the spin-state ordering is affected by external perturbations, we also have done a comprehensive computational study. The calculations show that subtle environmental perturbations affect the spin-state ordering and relative energies and are likely to be the root cause of the variation in spin-state ordering observed experimentally.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Compostos Férricos/química , Metaloporfirinas/química , Hidrocarbonetos Aromáticos com Pontes/síntese química , Compostos Férricos/síntese química , Metaloporfirinas/síntese química , Modelos Moleculares , Conformação Molecular , Teoria Quântica
10.
Chem Sci ; 6(2): 1516-1529, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29560240

RESUMO

Cytochrome P450 enzymes are heme based monoxygenases that catalyse a range of oxygen atom transfer reactions with various substrates, including aliphatic and aromatic hydroxylation as well as epoxidation reactions. The active species is short-lived and difficult to trap and characterize experimentally, moreover, it reacts in a regioselective manner with substrates leading to aliphatic hydroxylation and epoxidation products, but the origin of this regioselectivity is poorly understood. We have synthesized a model complex and studied it with low-pressure Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry (MS). A novel approach was devised using the reaction of [FeIII(TPFPP)]+ (TPFPP = meso-tetrakis(pentafluorophenyl)porphinato dianion) with iodosylbenzene as a terminal oxidant which leads to the production of ions corresponding to [FeIV(O)(TPFPP+˙)]+. This species was isolated in the gas-phase and studied in its reactivity with a variety of olefins. Product patterns and rate constants under Ideal Gas conditions were determined by FT-ICR MS. All substrates react with [FeIV(O)(TPFPP+˙)]+ by a more or less efficient oxygen atom transfer process. In addition, substrates with low ionization energies react by a charge-transfer channel, which enabled us to determine the electron affinity of [FeIV(O)(TPFPP+˙)]+ for the first time. Interestingly, no hydrogen atom abstraction pathways are observed for the reaction of [FeIV(O)(TPFPP+˙)]+ with prototypical olefins such as propene, cyclohexene and cyclohexadiene and also no kinetic isotope effect in the reaction rate is found, which suggests that the competition between epoxidation and hydroxylation - in the gas-phase - is in favour of substrate epoxidation. This notion further implies that P450 enzymes will need to adapt their substrate binding pocket, in order to enable favourable aliphatic hydroxylation over double bond epoxidation pathways. The MS studies yield a large test-set of experimental reaction rates of iron(iv)-oxo porphyrin cation radical complexes, so far unprecedented in the gas-phase, providing a benchmark for calibration studies using computational techniques. Preliminary computational results presented here confirm the observed trends excellently and rationalize the reactivities within the framework of thermochemical considerations and valence bond schemes.

11.
Curr Top Med Chem ; 13(18): 2218-32, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24047138

RESUMO

There is a major controversy in cytochrome P450 chemistry regarding the nature of the active oxidant responsible for substrate monoxygenation. Part of this controversy originates from the fact that the later stages in the catalytic cycle of P450 enzymes proceed so fast that little experimental evidence is available. Early studies suggested an iron(IV)- oxo heme cation radical ([heme((+•))-Fe(IV)=O] or Compound I) as the active species able to abstract a hydrogen atom from a substrate and rebind the hydroxyl group to form an alcohol product. Such simplistic early models involving a single active species have subsequently been invalidated by several experimental studies which clearly indicates that there must be at least two active species of some description. Based on these and other data, a two-oxidant hypothesis was put forward where Compound I and its precursor in the catalytic cycle ([heme-Fe(III)-OOH]- or Compound 0) are competitive oxidants. Density functional theory studies, however, suggest an alternative hypothesis involving a two-state-reactivity scenario where Compound I has two close-lying spin states that react differently with substrates and masquerade as two distinct oxidants. These theoretical studies show that the two spin states of Compound I react with substrates via aliphatic and aromatic C-H hydroxylation, C=C epoxidation and sulfoxidation reactions, and explain experimentally observed product distributions and kinetic isotope effects. This review will give an overview of recent studies on the two-oxidant versus two-state-reactivity hypotheses and how theory contributes to the understanding of enzymatic reaction processes.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Oxidantes/metabolismo , Oxigênio/metabolismo , Humanos , Modelos Moleculares , Oxidantes/química , Oxigênio/química , Especificidade por Substrato
12.
Inorg Chem ; 52(14): 7968-79, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23822112

RESUMO

A versatile class of heme monoxygenases involved in many vital functions for human health are the cytochromes P450, which react via a high-valent iron(IV) oxo heme cation radical species called Compound I. One of the key reactions catalyzed by these enzymes is C═C epoxidation of substrates. We report here a systematic study into the intrinsic chemical properties of substrate and oxidant that affect reactivity patterns. To this end, we investigated the effect of styrene and para-substituted styrene epoxidation by Compound I models with either an anionic (chloride) or neutral (acetonitrile) axial ligand. We show, for the first time, that the activation enthalpy of the reaction is determined by the ionization potential of the substrate, the electron affinity of the oxidant, and the strength of the newly formed C-O bond (approximated by the bond dissociation energy, BDE(OH)). We have set up a new valence bond model that enables us to generalize substrate epoxidation reactions by iron(IV)-oxo porphyrin cation-radical oxidants and make predictions of rate constants and reactivities. We show here that electron-withdrawing substituents lead to early transition states, whereas electron-donating groups on the olefin substrate give late transition states. This affects the barrier heights in such a way that electron-withdrawing substituents correlate the barrier height with BDE(OH), while the electron affinity of the oxidant is proportional to the barrier height for substrates with electron-donating substituents.


Assuntos
Compostos de Epóxi/química , Ferro/química , Porfirinas/química , Estireno/química , Cátions/química , Sistema Enzimático do Citocromo P-450/química , Humanos , Ligantes , Modelos Moleculares , Oxidantes/química
13.
Chemistry ; 19(12): 4058-68, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23362213

RESUMO

Iron(IV)-oxo intermediates are involved in oxidations catalyzed by heme and nonheme iron enzymes, including the cytochromes P450. At the distal site of the heme in P450 Compound I (Fe(IV) -oxo bound to porphyrin radical), the oxo group is involved in several hydrogen-bonding interactions with the protein, but their role in catalysis is currently unknown. In this work, we investigate the effects of hydrogen bonding on the reactivity of high-valent metal-oxo moiety in a nonheme iron biomimetic model complex with trigonal bipyramidal symmetry that has three hydrogen-bond donors directed toward a metal(IV)-oxo group. We show these interactions lower the oxidative power of the oxidant in reactions with dehydroanthracene and cyclohexadiene dramatically as they decrease the strength of the OH bond (BDEOH ) in the resulting metal(III)-hydroxo complex. Furthermore, the distal hydrogen-bonding effects cause stereochemical repulsions with the approaching substrate and force a sideways attack rather than a more favorable attack from the top. The calculations, therefore, give important new insights into distal hydrogen bonding, and show that in biomimetic, and, by extension, enzymatic systems, the hydrogen bond may be important for proton-relay mechanisms involved in the formation of the metal-oxo intermediates, but the enzyme pays the price for this by reduced hydrogen atom abstraction ability of the intermediate. Indeed, in nonheme iron enzymes, where no proton relay takes place, there generally is no donating hydrogen bond to the iron(IV)-oxo moiety.


Assuntos
Complexos de Coordenação/química , Ferro/química , Manganês/química , Oxidantes/química , Catálise , Sistema Enzimático do Citocromo P-450/química , Heme/química , Ligação de Hidrogênio , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...